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IIT. Contributions to the Mathematical Theory of Evolution.
By KarL Prarson, Unwersity College, London.

Commumnicated by Professor HeNrict, F.R.S.
Reccived October 18,—Read November 16, 1893,
[PLaTES 1—5.]
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I.—On the Dissection of Asymmetrical Frequency-Curves.

(1.) Ir measurements be made of the same part or organ in several hundred or
thousand specimens of the same type or family, and a curve be constructed of which
the abscissa @ represents the size of the organ and the ordinate y the number of speci-
mens falling within a definite small range éx of organ, this curve may be termed a
Jrequency-curve. The centre or origin for measurement of the organ may, if we
please, be taken at the mean of all the specimens measured. In this case the
frequency-curve may be looked upon as one in which the frequency—per thousand or
per ten thousand, as the case may be—of a given small range of deviations from the
mean, is plotted up to the mean of that range. Such frequency-curves play a large
part in the mathematical theory of evolution, and have been dealt with by
Mr. F. GarroN, Professor WELDON, and others. In most cases, as in the case of
errors of observation, they have a fairly definite symmetrical shape® and one that

* Symmetrical shapes may of course occur which are not of the normsl or error-curve form. See
Part II., § 11 of this paper.
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72 PROF. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION.

approaches with a close degree of approximation to the well-known error or probability-
curve. A frequency-curve, which, for practical purposes, can be represented by the
error curve, will for the remainder of this paper be termed a normal curve. When a
series of measurements gives rise to a normal curve, we may probably assume
something approaching a stable condition; there is production and destruction
impartially round the mean. In the case of certain biological, sociological, and
economic measurements there is, however, a well-marked deviation from this
normal shape, and it becomes important to determine the direction and amount of
such deviation. The asymmetry may arise from the fact that the units grouped
together in the measured material are not really homogeneous. It may happen that
we have a mixture of 2, 3, ... n homogeneous groups, each of which deviates about
its own mean symmetrically and in a manner represented with sufficient accuracy by
the normal curve. Thus an abnormal frequency-curve may be really built up of normal
curves having parallel but not necessarily coincident axes and different parameters.
Even where the material is really homogeneous, but gives an abnormal frequency-curve
the amount and direction of the abnormality will be indicated if this frequency-curve
can be split up into normal curves. The object of the present paper is to discuss the
dissection of abnormal frequency-curves into normal curves. The equations for the
dissection of a frequency-curve into % normal curves can be written down in the same
manner as for the special case of n = 2 treated in this paper ; they require us only to
calculate higher moments. But the analytical difficulties, even for the case of n = 2,
are so considerable, that it may be questioned whether the general theory could ever
be applied in practice to any numerical case.

There are reasons, indeed, why the resolution into two is of special importance. A
family probably breaks up first into two species, rather than three or more, owing to
the pressure at a given time of some particular form of natural selection ; in attempt-
ing to procure an absolutely homogeneous material, we are less likely to have got a
mixture of three or more heterogeneous groups than of two only. Lastly, even
where the heterogeneity may be threefold or more, the dissection into two is likely
to give us, at any rate, an approximation to the two chief groups. In the case of
homogeneous material, with an abnormal frequency-curve, dissection into two normal
curves will generally give us the amount and direction of the chief abnormality. So
much, then, may be said of the value of the special case dealt with here.

A distinction must be made between the two cases which may theoretically occur.
If we have a real mixture of two normal groups represented by our abnormal frequency-
curve, then, theoretically, it is possible to find the two components, and these two
components must be unique. If they were not unique, a relation of the following kind
must hold for every value of & :—

e, Y eV ¢ Gl Y e bR ¢ RN
R 20,2 _I_ 2-‘-— e e —. e 2042 — 4 T 2oy
o/ (2m) oo/ (2) o/ (2m) o/ (27)
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PROF. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION. 73

Between the six constants on either side of this equation an infinite variety of
relations can be reached by giving 2 an infinite variety of values, and it seems
impossible to satisfy this series by the same set of values of the constants. For
example, let « be very great, and suppose o, to be the largest of all the quantities

(z—0b)?

oy, 0y, 05, and o,. Dividing b . e~ 2 and putting x very great we have
1 2 3 4 g by \/(277.) p g y g

¢ e, =2 (L _l) e, T (L_1! ) e L
2L +~_2_ e 2\ 02) — Lo 2 \o o2 + i ) e 2 \o2 7 op? ,
a1 Oy o, N

whence, proceeding to the limit,
¢yfoy =0,

unless o} = o3 or oy,

The first is impossible by hypothesis, therefore the latter must be true, say
o, = oy This gives us at once ¢; = ¢,

Returning to the original equation, and making x large in it, we see that the first
two terms become equal on either side. Hence, the second two terms must become
equal as x approaches infinity, or

22 2?
2 e ey = L Tk,
Ty gy

Dividing again by e¢” %%, this leads in the same manner as before to o == o, and,
ultimately, to ¢y, = ¢,
Our original equation may now be written

¢ _mhe (b I

G T {G 202 e g pre) } — _09_,__ {e 207 —m @ 202 } . . (7’).
o/ (2m) I o/ (2m)

Put z = §(b; + by), then the left-hand side vanishes and, accordingly, the right
must vanish, but this involves either
b2 = b4<7
or

by + by =Dy + by
Similarly, putting # = § (b, + 0,), we find that either

by = by,
or

bidby==by+b. . . o . . ()

Thus, either the two sets of components are identical, or («) is true,
MDCCOXCLV.—A. L
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Multiply equation (n) above by w, 2® and 5 in succession, and integrate the results
respectively between the limits & and — a.*  We find

(by = b3 ey = (by — Dy)cy . . I (/8)3
{302 (b — bs) + 02— bt e, = {30,° (54,- - b:z) + 0 — bgg} Cas

reducing by aid of («) and (B8) to

30y = b)by =380y —bby . . . . . . . . (y),
and
(150" (b) = by) + 100> (b = b%) + b° — bf ¢
= {150y" (by — by) + 100 (b — b)) + b — 0%} c,,

reducing by aid of («), (B), and (y) to the two forms,
209 + 80 + 302 4 3D + 4b)by=0 . . . . . . (3),
20 4 80 + 30> + 302+ 4Dy, =0 . . . . . . (e).

Equations (a), (B), (8), and (e) are four independent equations, which suffice to
determine by, by, bs, b,, as definite functions of oy, oy, ¢;, and ¢,. But b, b, are 1n
general independent of o4, oy, ¢), and ¢, ; hence it follows that () cannot in general
be true, or we must have b, = by and b, = b,. That is, a curve which breaks up into
two normal components can break up in one way, and one way only.

Now it is clear that in actual statistical practice our abnormal frequency-curve will
never be the absolutely true sum of two normal-curves ; indeed, if it be not a mixture,
but an asymmetrical frequency-curve, it is not necessarily a very close approach to
the sum of two frequency-curves of normal type,—it may be the limit to an
asymmetrical binomial.t  We must not, therefore, be surprised if more than one
solution be given by any method of dissection. A mathematical criterion for dis-
criminating the “true” solution might easily be given. For example, in the method
of the present paper, we might define that as the “ true,” or at any rate the “ best,”
solution which gave for the compound-curve a sixth moment nearest in value to that
of the observation-curve. Such a theoretical criterion, however, may not have much

* The values of the successive moments of the normal-curve are given in § 5 of this paper, and

permit of these integrations being performed at once.
t The general form of the limit to asymmetrical binomials is

y=0(p+2)" emem

where C, ¢, and 8 are constants, and « is to have positive values only. g is always positive. [A
slightly fuller form is given in the abstract of this paper, ¢ Roy. Soc. Proc.,” vol. 54, p. 331.]
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PROF. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION. 75

practical value. For after we have made the areas and first five moments of two
curves identical, their sixth moments will in general be (like their contours) much
closer together than either are to that of the curve of observations. Added to this
the great labour involved in the calculation of the sixth moment is suflicient to deter
the practical statistician, if any other convenient mode—e.g., results of measurement
on other organs—suffices in the particular case to discriminate between the solutions
found. Thus, while the mathematical solution should be unique, yet from the
utilitarian standpoint we have to be content with a compound curve which fits the
observations closely, and more than one such compound curve may arise. All we can
do is to adopt a method which minimizes the divergences of the actual statistics from
a mathematically true compound. The utilitarian problem is to find the most likely
components of a curve which is not the true curve, and would only be the true curve
had we an infinite number of absolutely accurate measurements. As there are
different methods of fitting a normal curve to a series of observations, depending on
whether we start from the mean or the median, and proceed by ¢ quartiles,” mean error
or error of mean square, and as these methods lead in some cases to slightly different
normal-curves, so various methods for breaking up an abnormal frequency-curve may
lead to different results. As from the utilitarian standpoint good results for a simple
normal curve are obtained by finding the mean from the first moment, and the error of
mean square from the second moment, so it seems likely that the present investigation,
based on the first five or six moments of the frequency-curve, may also lead to good
results. 'While a method of equating chosen ordinates of the given curve and those of
the components leaves each equation based only on the measurements of organs of one
size, the method of moments uses all the given data in the case of each equation for
the unknowns, and errors in measurement will, thus, individually have less influence.
At the same time it would be of great interest to discover whether other methods of
dissection lead to results identical or nearly identical with the method of moments
adopted by the present writer. Any other method analytically possible has not yet,
however, occurred to him ; nor any criterion for distinguishing practically between
two solutions so close as those of figs. 1 and 2, other than that adopted by Professor
‘WELDON when he appeals to the measurements of a correlated organ.

(2.) In the case of a frequency-curve whose components are two normal curves, the
complete solution depends in the method adopted in finding the roots of a numerical
equation of the ninth order. It is possible that a simpler solution may be found, but
the method adopted has only been' chosen after many trials and failures. Clearly
each component normal curve has three variables: (i.) the position of its axis, (ii.) its
“ standard-deviation” (Gauss’s “ Mean Error,” A1rY’s “ Error of Mean Square”), and
(iil.) its area. Six relations between the given frequency-curve and its component
curves would therefore suffice to determine the six unknowns. Innumerable relations
of this kind can be written down, but, unfortunately, the majority of them lead to

L 2
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76 PROF. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION.

exponential equations, the solution of which seems more beyond the wit of man than
that of a numerical equation even of the ninth order.

(8.) In any given example the conditions will be suflicient to reduce the suitable
roots of this equation very largely, possibly to two or even ome. These limiting
conditions will be considered later. A suitable root of this equation leads to a
quadratic for the areas of the two component normal curves. This quadratic is funda-
mental, and appears to be highly suggestive for the problem of evolution. We have
two cases :

(i.) Both its roots are positive.

In this case the given frequency-curve is the sum of two normal curves. The
units of the frequency-curve may be considered as composed of definite proportions of
two species, each of which is stable about its mean. The process of differentiation
here appears complete.

(ii.) One root is positive and the other negative.

The given frequency-curve is now the differcnce of two probability-curves. The
probability-curve, with positive area, may possibly now be looked upon as the birth-
population (unselectively diminished by death). The negative probability-curve is a
selective diminution of units about a certain mean ; that mean may, perhaps, be the
average of the less “fit.”

It is possible that in some numerical cases solutions of both the types (i.) and (ii.)
will be found to exist, but I imagine that in most cases of a well-marked and charac-
teristic asymmetrical frequency-curve, either only one type of solution will exist, or,
if two types do exist, then one will give a much better agreement with the actual
shape of the curve than the other. That the two types of solutions should exist side
by side occasionally is, perhaps, to be expected. In such cases we have examples of
groups, which are, perhaps, in process of differentiation into separate species by the
elimination of members round a selected mean.

(iii.) From the nature of the problem, the case of both roots negative does not
oceur.

We now pass to the solution of the problem :

Gliven an asymmetrical frequency-curve to break it up, of possible, wnto two com-
ponent probability-curves, or into two normal curves.

(4.) Preliminary Definitions and Problems.

(i.) Given any curve ABC, and the line %y, if we take the sum of the products of
every element of area by the nth power of the distance of the element from the line
Yy, we form the nth moment of the area about the line yy'.

Clearly, if y be the length of a strip parallel to 4'y” and x its distance from y'y/, then the
nth moment = [z"y dx, the integration extending all over ABC, or from A to C in our
case, where the curve is always bounded by a straight line, AC, perpendicular to 3.
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PROF. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION. 77

If & be any standard length, say 10 or 100 units, then the nth moment is of the
order /e, if & be the area of ABC. It therefore equals u',ie, where p/, is a purely
numerical factor. We shall invariably represent it as the product of these three
factors.

(ii.) Given the first n moments about 3y, or the coefficients p'}, w'y, W'y, p's -+ + 1,
to find the nth moment about yy or the coeflicient w,.

Let the distance between yy and 4y’ be d = ¢h, then

ol = {(L — d)y dx,

or

, , n(n—1) , win—1(n—2) ,,
P = Py — NG,y + ”1—'5_92#' n—9 |3 Q‘% e "I", &e. .

In particular, since pu'y = 1,

p=p1—q
po = 'y — 2qp1 + ¢
ps = p'y — 3qu’s + 3¢°%w1 — ¢° ;oo (1)

P = Py — 4qp’s + 6¢°%wy — 4g°%" + ¢*
ps = s — Sqpy + 10¢°%"s — 109°%ws + 59'p’y — ¢° J

When the line %'y’ passes through the centroid of the curve, and the curve is
symmetrical about 4y’ 'y, p's, p; are all zero. Hence if in this case we take yy to
the right of ¥y, or d negative,
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78 PROV. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION.,

Fir=4q )

pe = py + ¢

py = 3qp’s + ¢°
=g 6%, + ¢

s = dqp'y + 10¢°%ws + ¢°

-~

—~
)

~—

(ii.) The distance of the centroid of ABC from %'y is the ratio of its first moment
w'he to its area o, and = p'}h.

(iv.) To find the successive moments of a given curve about a given line.

For the purposes of the present problem we require only the first five moments of
a curve like ABC about a line yy passing through its centroid. The solution may be
obtained either analytically or graphically according to the accuracy or rapidity with
which we wish to work.

(a.) Analytically.—Suppose the frequency-curve to be obtained by plotting up the
resulis of 1000 measurements, each unit of length along AC corresponding to an
equal change in the deviation. Starting from the point C, beyond which no
individual occurs, we may have in practice, perhaps, 20 to 30 equal ranges of
deviations before we reach the point A, which terminates the deviations on the left.
The equal range being taken as the unit of length, let the numbers in the groups at
1,2,38,4,5... units of distance from C be vy, %o, Y3, Y Y5 - - -

Then the n™ moment clearly equals very approximately

1n><y1+271Xy2+3¢LX?/3+41LXyLL+..‘,
or since @ = 1000, and A may be conveniently taken = 100,

b X 2 Xy 3 Xy A Xy
Fw= 100* x 1000 SRR O

- Sufficiently accurate values can then be found for u'y, gy, p's p'y, p's, provided we
know the 2nd, 3rd, 4th, and 5th powers of the natural numbers up to about 20 to 30.
The values of these powers up to 30 are given later in this paper.

Knowing the first five moments about the vertical through C, we can find the
centroid by aid of (iii.) above, and then the moments about the vertical through the
centroid by aid of equations (1).

Since p; = 0 for the centroid u'y = ¢, and therefore we have the following to
determine the other moments :—
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po = 'y == ¢° , j|
ps = p's — 3qu'y + 2¢° '} <4)
py =y == Agps + 69°%wy — 3¢t

!
Py = s — Bqp'y + 10¢°%u"s — 10¢°s + 495J

The centroid having been found, it may be asked : Why we should not calculate
Mo gy s py directly ?  The answer lies in the fact that the centroid will not generally
coincide with a unit division on the deviation axis, and the powers to be calculated,
instead of being those of two place figures, become in general powers of numbers
containing three or four figures. Thus the labour of the arithmetic is much increased.

(b.) Graphically.—If the figure be drawn on a large scale, the moments may be
found with a fair degree of accuracy by aid of the following process, which has long
been of use in graphical statics for finding the first, second, and third moments of
plane areas.™

It is required to find the moments about O%" of the curve 4BC, bounded by the
straight line O'C4. Take O”y” parallel to O’y  and at distance #. Take any line
PP, first to Oy’ from AC to ABC; let the perpendicular from P’ on O"y” meet it
in V', and let O'N" meet PP in @, ; let the perpendicular from Q" on O”y” meet it
in N”, and let O'N" meet PP’ in ,; let the perpendicular from @, on 0"y’ meet it
in N/, and let O'N" meet PP in ;. In this manner a series of points Q,, Q,, @,
@y, @, are determined. et these points be determined for a series of positions of
PP’ taken at short intervals from C to 4, then all the corresponding @ being joined,
we obtain curves termed respectively the first, second, third, fourth, and fifth moment-

* The third moment of a plane area is used in determining graphically the moment of inertia of a
spindle about its axis. The method described is sometimes attributed to CoLLIGNON, but seems to have:
been long in use to find * equivalent figures” in the case of beam sections.
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80 PROF. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION.

curves. Let the areas 4Q,L,C, 4Q,L,C, &c., be read off with a planimeter, and be
o, 0y, a3 ... Then
' ) = o/

Py = opfar
py =agfe k.. . o . . . . . . . (5)
py = ayfor

ps = “5/“ J

A good draughtsman will construct these curves with great readiness, and if on a
sufficiently large scale, the results may be read to within the one per cent. error.*

Equations (4) then enable us to complete the problem of finding the moments
about a line through the centreid. Or, the first moment being found about 0%/, and
so the centroid determined ; we may shift Oy’ till it passes through the centroid,
and then proceed to find p, ... p; directly in the above manner. In this case care
will have to be taken in reading the areas of the moment-curves, which have now
pieces of their areas negative, to carry the planimeter point, in the proper sense, round
their contours.

(5.) Properties of the probability-curve.

Let the equation to the probability-curve be

, e

Y= o/ 2m)

e L (6).

Then o will be termed its standard-deviation (error of mean square). ¢ is the
total number of units measured, or the area of the probability curve.

(i.) To find the second and fourth moments of the probability-curve about the axis
of 7.

Let them be M," and M,.

Then

M, =2 r yat de =c X o’
0

M,/ =2 r y'atde=c X 30"
0

Clearly My' and M, are zero.

[* My demonstrator, Mr. &. U. Yutg, has graphically calculated the first four moments of a number
of statistical frequency-curves, with the object of fitting them to the generalized probability-curve (see
footnote, p. 74). The method is sufficiently accurate in practice, and I hope soon to have an instrument
to construct these curves mechanically, designed by him.—February 9, 1894.]


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

PROF. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION. 81

(ii.) Now let « be a standard area and h a standard length. Let us use

Equations (2) of Art. 4 (ii.), taking ¥y’ as the axis of symmetry of the probability-
curve, and yy at a distance b to the left, then—

pihe = be.

poli’c = (o® + %) c.

pshic = (8ba® + b%) c.

pahic = (3" + 6b%0% 4+ b%) c.

pshPc = (1500 4 106%0° + b%) c.
Now let c¢/a =2, o/b=wu, andb/h=1.

Then z, u, and vy are purely numerical quantities, and we have for the first five
moments round yy— '

M, = yzah, h

M, = y% (1 4+ v?) ah?,

M; = 9% (1 4 3u?) ahd, N (4]
M, = y*%(1 -+ 6u® + 3u*) ah?,

M; = y*2 (1 + 10u® 4 15u%) ah®, |

(6.) We are now in a position to write down the equations which give the general
solution of our problem. Let the deviation-axis of the asymmetrical frequency-curve
be taken as axis of w, and let the axis of y be a perpendicular on this axis through
the centroid of the frequency-curve. Let this centroid and the first five moment-
coefficients about the axis of # of the frequency-curve, v.e., 0, py, pg, py, ps, be found
either analytically or graphically by the methods suggested in Art. 4 (iv.).

Then, if the position and magnitude of the component normal curves be given
by the quantities by, ¢;, o}, and by, ¢,, oy, or the corresponding numerics

Y1 % Uy, a0d g, 2o, Uy,

we have, since moments round the vertical axis are clearly additive—
MDCCCXCIV.—A. M


http://rsta.royalsocietypublishing.org/

|
P

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

a
\

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

82  PROF. K. PEARSON ON THE MATHEMATICAL. THEORY OF EVOLUTION.

€+ ¢ =a,
(v + o) @b = 0,
' (14 w®) + v’z (1 + uy?)} ah? = poal?,
N’ (14 3u%) + 7% (1 + 3u.?)} ah® = pyali®, .
Syt (14 6u® + 3u®) + vz, (1 4 6u,” + 3uyt)} alt = p el
$y52, (1 4 1002 + 15w,%) 4 9,02, (1 4 10u° + 15u,M)} ah® = p,ald,
The first equation here represents the equality of the areas of the resultant curve and

its components. Reducing to the simplest terms, we have the following six equations
to find the six unknowns, 2, 2y, ), e, %y, Uy i —

sAz=1 . . . . . . . . . . (8)

Y& vz =0 . . . . . . . . . . (9

v (Lt ud) v+ uf)=p . . . . . . (10)
i (L4 8u®) + yl2 (1 4+ 3u®)=ps . . . . . . (11).

' (L4 6u® + 8uy*) + 9y'% (1 + 6ug® + 3uf) =, . . . (12).
%2 (1 4 10w 4+ 15u*) 4 v,%, (1 4+ 10u® + 15u,") =y . . (13).

Equations (8)-(13) give the complete solution of the problem.*  After several trials,
I find that the elimination of z,, %, u;, u, from these equations, and the determination
of equations giving vy, and vy, + v, appear to lead to a resulting equation of the
lowest possible order.

(7.) Eliminating z, between (8) and (9), we have

V2
By =— = o o e e e e (14).
! 4 B £ ( )
Similarly,

Ra!
A 15).
? YN Y2 ( )

* All my attempts to obtain a simpler set have failed. ~Equating of selected ordinates, or of selected
portions of area, or of moments round the axis of @, all appear to lead to exponential equations defying

solution. It is possible, however, that some other six equations of a less complex kind may ultimately
be found. '
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Equations (14) and (15) clearly give the numbers in the component groups so soon
as y, and 1y, are found.

Substituting these values of z; and z, in (10) and (11), we have two equations to
determine u,* and u,? in terms of y,, v, Solving them we find

) Ha F’l
yt =1 %;1.;;_%(,,1_;.},2)4_72 Co ..o (1L6).
P #
Vally® _f_y;—iﬁ«—*(')’l'l")’z)-l-')’l Coe e (1),

These equations clearly give «,? and u,?, and, therefore, the standard- dev1atlons of
the component groups when vy, and vy, are known.
For brevity, put

v = (')’1“; )2: Vg = ('}’2’“2)2:
=1+ v D2 = Y17
Then
”1=i"z"%#3/7z—%271')’1 +py o0 (18),
Vg =y — F /Y1 — EPYeF P o - o . . . (19)’

while from (12) and (13) we have

2
&)

2
2 (')’1”1 - ‘)’2”2) + %1‘ - ;; =(y, — v2) 150 — 30" — _M/Pz} . (20)’

2 (y,v; — yg'vy) + 38 (02 = v?) = (y1 = 72) (P12 — T P° — % Bs/Pa} - (21)-
We must now substitute (18) and (19) in (20) and (21). We find
Y1V — Yol = (v1—72) {M -3 #3 h_ P+ 202}

Y1V — Yy = (r1 — ’}’2) {f"‘?pl #3 “““ + ks — 3P+ %Plpz}’

%j_%_= _')’2{ 7 +&1)2)2+9291 P2_2M2+%M3%},
v — 0 = (y1— %) {?la‘li;i;l'F %Pls—%%?—_ﬂzp _‘_%%1]’?1:_2 ”‘%Plpz}:
whence, .
;iiz_ _ %/;ipl — 2p2 + 6p, — 9 (1 1; T _ 0.

5% 15 Cugpey — L
——E%& — 20pg — 2p° + 4pipy — ( M"f& ) — 0.
Dq Ds
M 2
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Write
A, = Ipy? — By, Ny = 80pops — 3ps . . . . . . (22),

and put
Ps=P1Ps < -« - « « « .« . o . (238),

then, multiplying up, the above equations become
p = dpgpy — 2p — Mpy +6p® =0 . .. (24),
Spgps — 2ps° + dpypy® — 20p5p)® — Nypt=10. . . . . (25)

From these equations let us first find p, in terms of p,. Multiply the first by p, and
subtract from the second

dpsps® 4+ ps (4p® + My — 2P5%) — 20pgpe® — Nyp? =0 . . . (26).

Multiply (24) by 2u; and add to (26) we find

2ps” 4 Py (— 4’ + Npy — 2p°) — Zpdupy — Mpy® — Spgpy® = 0,
or
21 — 2uhypy — Npy® — By py® -
—_— e T &e S Lol e R , . . . . 2 7).
Ps 4pg® — Nypy + 2p5° (27)
Hence, so soon as p, is known, p, = ps/p, can be found, and then y, and y, will be
the two roots of the quadratic '

Y—=pry+p=0 . . . . . . . . . (29).

Returning to (27), substitute this value of p, in (24), and we have an equation
containing p, only, on which the whole solution of the problem now turns.
This equation is the following one :—

+ (288p15" — 120Nps — N2)pg° + (2415°N; — Tpas®N2)py* + 825Ny py — 24ps* =0 . (29).

(8.) Some remarks may be made on this equation. Since this equation is of an odd
order, one real root may always be found. Further, remembering that A, = 9u,* — 3y,
and \; = 30uyuy — 3u;, we see that in the case of a normul curve, for which
By = 3py?, while pg and u; = 0, all the coeflicients of the above equation of the
ninth order vanish except the first.

Thus p,, as we should naturally expect, will be zero. Accordingly, since, with
increasing symmetry, the coefficients become small, it will be needful to work their
values out to a greater degree of exactness the slighter the degree of asymmetry.
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Given that a frequency-curve is compounded of two normal curves, equations
(29), (28), (27), (14), (15), (16), and (17) form the complete solution of the problem.

We may throw the whole solution into the following formn :—

Stage I.—Find the centroid of the frequency-curve and calculate u,y, pg, py ps, Ay
and \,.

Stage II.—Solve (29) for p, and find the corresponding values of p, from (27). v

Stage III.—Find the positions of the axes of the component normal curves
from (28).

Stage IV.—The fractions z, and z, that the areas of the normal curves are of
the area of the frequency-curve are the roots of the quadratic :

Py
P =0.... . . . . . . . (30)
Pt —4p, ( )

Stage V.—Since o,/h = ,/v, and o,/h = ,/v,, the standard-deviations are given
at once on substituting in (18) and (19).

(9.) The whole method may be illustrated by the following numerical example :—

Breadth of ““ Forehead” of Crabs.—-Professor W. F. R. WELDON has very kindly
given me the following statistics from among his measurements on crabs. They are
for 1000 individuals from Naples. The abscisse of the curve are the ratio of *fore-
head ” to body-length, and one unit of abscissa = 004 of body-length. No. 1 of the
abscissee corresponds to ‘580 — ‘583 of body-length. The ordinates represent the
number of individual crabs corresponding to each set of ratios of forehead to body-
length. Thus there was one crab fell into the range 580 — *583, three fell into the
range ‘584 — *587, five into the range '588 — *591, and so on. The average length
of animals measured 35 millims., and measurements were recorded to *1 millim.

Abscissee. Ordinates. ‘ Abscissee. Ordinates.
1 1 16 74
2 3 17 . 84,
3 5 18 86
4 2 19 96
5 7 20 85
6 10 21 75
7 13 22 47
8 19 23 43
9 20 24 24,

10 25 25 19
11 40 26 9
12 31 27 5
13 60 28 0
14 62 29 1
15 54
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This curve is plotted out as the dark continuous line in Plate 1, fig. 1, and is
clearly asymmetrical. 1 proceeded to calculate its first five moments in the analytical
method suggested on p. 78 (a), each calculation being made twice independently.
I took & =1, and clearly & == 1000. The moments were taken about the vertical
through the point 0, and were calculated by the aid of Table I. of the powers of the
first 80 natural numbers given at the end of this memoir. The following results
were obtained :— ' :

= 16799
py = 304923
py = 5831759

p = 116,061'435
s = 2,385,609°719

p, since h =1, is clearly the distance of the centroid vertical of the frequency-
curve from the origin O, we. = q of p. 77 (iL.).

The moments about this centroid vertical were now calculated by aid of (1), p. 77.
There resulted :—

M = 0

Py = 22'716,599
g = — 53874770
My = 1576'533,413
s = — 9598°313,922
A, = — 85'205,407
\; = — 7920°604,761

where A, \; are given in terms of the u’s by (22) of p. 84.
Turning now to the fundamental nonic (29), let it be divided by 24, and written in
the form

Py’ + aypy” + agpy’ + ap® + w; Pyt + 0P’ + o + agp, + ay = 0.

Then the coefficients a,, a; . . . were calculated, and the following values found :—
0y = 99406
oy = 4,353°742
a,= — 423,696
ay = — 3,702,933
g = 119,298,911
a; = 1,282,409,400
4= — 957,080,900
ay = — 24,451,990,000
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- Put p,=10x and divide by 10° we then have for the fundamental nonic the
following equation, where only three decimal places are retained :—

X’ 1994y7 + 435435 — 42°370x° — 37°029y* + 119:299%® -+ 123-24 1%
— 9571y — 24'452 = 0.

After a somewhat laborious calculation, the values of STurM’'s functions f(x),

S0 (0 S5 (s S4X) S50 S5 (X)s S5 (%) S5 (X5 Sy (x) were ascertained and gave

the following results :—

S(w)=+ S(—o)=—
Si(w)=+ Si(=) =+
So(w)=— Si(w) =+
Ja(w)=— Js(w) =—
Ji(o)=— Ji(o) =+
Si(e)=+ Si(w) =+
Jo(w)=+ Ji(w) =-—
Ji( o) =+ Ji(®) =+
Js(o)=— Js(o) =+
Jo(w)=— Jo(o) =—
8 changes. 6 changes.

Thus there are 6 — 3 == 3 real roots. ‘
These three real roots were then localized as follows :—

Two roots between 0 and — 1, x, and x,.

One root between 0 and 1, xs.

As successive approximations, I found :—-

Toy,: — 1, —89, —870, — ‘8757,
» Xo: — B,  — 65,  — 670,  — 6724,
o Xs: B, 40, 422, 4170.

With sufficient accuracy we may then take for the values of p, :—

1st solution, p, = — 8-757.
ond ,, p,= — 6724
3rd ,, py = 4°170,
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Discussion of first solution. p, = — *8'757. p, was first caleulated from (27) on
p- 84, and then p, = py/p, found. There resulted : p, = — 1:027.

The quadratic for y,, v, which are here identical with b, b, (the distances of the
centroids of the component probability-curves from the centroid vertical of the
frequency-curve), i :-—

¥ 4 1027y — 8757 = 0,
whence

y, = — 3517, vy = 2°490.
The values of z; and z, were now found from (14) and (15) of p. 52.
z, = 4145, zy = 5859,
thus the numbers of individuals in either group are respectively

¢, = 414°5, ¢, = 585°5.

The values of the standard-deviations, o, and o, were now determined from
(18) and (19), where, since h =1, v; = o\% and v, = 0> At the same time the
maximum ordinates of the component probability-curves, , and y,, were found from

—_ _a _ %
"= Ve, hZ e e,
There resulted
o, = 44685, o, = 31154,
yl = 37‘008, yg = 74'976.

Thus the 1st solution may be summed up as follows :-—

1st Component. 2nd Component.
6, = 41475, ¢y = 585°5.
b= — 3517, by = 2:490.
o= 4:4685, oy, = 31154,
Y = 37008, Yo = T74'976.

These two normal curves were now drawn by aid of the Table II., which was
calculated afresh for this purpose from the exponential.*  These curves are plotted out
in fig. 1, and their ordinates added together give the resultant curve. It will be seen that
this curve is in remarkably close agreement with the original asymmetrical frequency-
curve, an agreement quite as close as we could reasonably expect from the com-

* T have always found it more convenient to work with the standard-deviation than with the probable
error or the modulus, in terms of which the error-function is usually tabulated.
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parative smallness of the number of individuals dealt with, and the resulting fact
that the observation-curve can at best only be an approximation to the true

resultant.

2nd  Solution.—-Precisely similar calculations were undertaken for the value
Py = — 6724, and it will, accordingly, be sufficient to cite the final conclusions
here.

Quadratic for y : 9 — '3412y — 6°724 = 0.

1st Component. 2nd Component.

¢, = 4672, cg = 5H32'8.
by= 2769, by = — 2'428.
o= 2878, oy = 4:7702.
Yy, = 64764, Yy = 44:559.

These component-curves are drawn in tig. 2, and their ordinates added together.
We see that we have again broken up our asymmetrical frequency-curve into two
probability-curves, whose sum is a very close approximation to the original curve.

3rd Solution : p, = 4°170.

While the first two solutions have been additive, this solution makes y, and y,
(ps = y1y,) of the same sign, or the centroids of the component curves fall both on the
same side of the centroid vertical of the frequency-curve. Accordingly the area of
one of them must be negative, and the solution promised to be a subtractive one, t.c.,
to represent the frequency-curve as the difference of two normal curves.

Determining pg and then p, from (27), we find p, = — 3605 ; hence

¥yt 4+ 3605y 4+ 4170 = 0.

The roots of this equation are, however, imaginary. In the case of crabs’ foreheads,
therefore, we cannot represent the frequency-curve for their forehead lengths as the
difference of two normal curves.

(10.) So far as the nonic is concerned, our work is now accomplished. Taking the
biologist’s measurements and assuming them to be the chance distribution of two
unequal groups about two different means, then one or other of our solutions is the
correct answer. Applying the test of the sixth moment, we find for the observations
Mg = 177,004, while for the first solution it is 188,099 and for the second solution
192,446. According to this test, the first solution is the required one,* but, as we
have noticed, the two solutions are themselves much closer together than either to

* The theory of correlation will here, perhaps, confirm this result.  Professor WeLDON tells me that
the first and not the sccond solation is in good accordance with his other measurements.

MDCCCXCLV.—A. N
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the observations (see p. 75). In fact, the contours of the compound-curve for both
solutions are very close together, and neither differs more from the observations than
most normal curves differ from symmetrical frequency-curves in statistical measure-
ments of this kind. . -

The contours are so close that, notwithstanding we have demonstrated a theoretical
uniqueness for the solution of the problem (see p. 72, et seq.), we see that, from the
standpoint of practical statistics, it is possible for the given material to be broken up
into more than one pair of normal curves. Thus the problem indeed becomes some-
what arbitrary—at any rate till the asymmetry of the frequency-curve becomes much
more marked than is the case with that of the foreheads of Naples crabs. Indeed,
although the method adopted leads to only two solutions, il is quite possible that
pairs of component normal curves might be tentatively found lying in the neighbour-
hood of those determined by the above solutions, which would give resultant-curves
fairly close to the frequency-curve. Professor WELDON had, indeed, found by repeated
trials one such solution, but this solution differs widely in the third and higher
moments from the observations; it cannot, therefore, be considered to have the same
justification as those given by the present theory. Granted that the original obser-
vations represent a mixture of two species varying about their mean according to
exact normal curves, our method gives two solutions, and two only. Without corre-
lated measurements, it might be difficult to discriminate between these solutions—at
any rate from the standpoint of practical statistics. The perhaps over-fine theoretical
test of the sixth moment decides for the first solution.

I1.—The Dissection of Symmetrical Frequency-Curves.

(11.) Another important case of the dissection of a frequency-curve can arise, when the
frequency-curve, without being asymmetrical, still consists of the sum or difference of
two components, %.e., when the means about which the component groups are distributed
are identical. This case is all the more interesting and important, as it is not unlikely
to occur in statistical investigations, and the symmetry of the frequency-curve is
then in itself likely to lead the statistician to believe that he is dealing with an
example of the normal frequency-curve. It seems to me that without very strong
grounds for belief in the homogeneity of any statistical material, we ought not to be
satisfied by its representation by the ordinary normal curve, simply because our
results are symmetrical and fit the normal curve fairly well. ~We ought first
to ascertain whether or not they would fit still better the sum or difference of two
normal curves. This, at any rate, is a first stage to demonstrating the homogeneity
of our material, although possibly our test for two may fail, not because our material is
homogeneous, but because its heterogeneity is multiple rather than double.*

* Symmetry might arise in the case of compound frequency-curves, even without identity of the
means of the components. In this case, for two components we should have for different means,
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We will now modify the results of our previous investigation to suit the case of an
asymmetrical frequency-curve which has arisen from the superposition of two normal-
curves having the same axis. In this case if we unite, b, = b, = 0, v, = o/
(= uy1), 03 = ao/h (= 1yy,) in Equations (8) to (18) we have (9), (11) and (13)
identically satisfied, and (8), (10), and (12) become

| s z=1 . . . . . . . . . . (31,
o
~
equality of component group-totals and of their standard-deviations. This equality seems less likely
than equality of means and divergence of totals and standard-deviations. Should it exist, however, we
fall back on a sub-case of the general case we have alveady dealt with. We need only, in Equations
(8)-(13), put 2, = 24, vy = — 7, % = 25, and we have
a=n=h w0 bud) = gt (1 G+ 3uh) =,
whence ‘
Q 1 1
=3’ =m 1y, = v @)y 3
=) = { o,
: 2 ! (Bug® — 1) ’
or,
w
O Cl = 62 = —};‘(1,
b= — by = {3/“2”:1'_1}4L,
B — )\ [ V(2 3
0] == 0y = h { ,\/(,‘2,,,,',._“_4) <,. SA S B | 2
! ? 2 v (3pg® — )

The possibility of the solution clearly depends on 3u,? being greater than su,.

The following is an example of this special case. Mr. MERRIMAN gives some results for American
target practice, on page 14 of his Text Book on Least Squares. He does not seem to have noticed that
the resulting-curve is very far from a normal-curve. I find that for these observations

wy= 6-482 '/“'1 = 0
wo=  44-502 py= 2486
4
“1‘ Wy = 3820582 uy =104
b oy = 2405094 = 15793,

The smallness of ug indicates general symmetry ; assuming then that the shots were fired in two groups
with equal precision, I find ¢) = ¢, and b, = — b, almost exactly.

‘We have accordingly

by = — by =1'082,
o = oy = 1'147,
[ For the 1000 shots as a whole ¢ = 1:577.]
Allowing for a uniform error of defective sighting amounting to ‘482, we find a compound-curve
5 fitting closely Mr. MerrIMAN’S figure, and indicating that the gun was aimed af the centres nearly of
divistons 5 and 7, and not at that of 6. Six was possibly white, 5 and 7 black. Like results of course
would arise from a change of sighting about midfiring.

N 2
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A AT (32),
ottt =%p, . . 0 0 L oL (83)

Clearly we require one more equation. At first sight it might seem that a fourth
equation would come readily, from the fact that the mid-ordinate m of the frequency-
curve is the sum of the mid-ordinates of the component probability-curves.

This leads to

(,'l

("9_/“__ e
Vema T Jeme ="
or
ﬁ+ﬁ=m..u....wm
if

m' == \/(2m) mh/a.

But besides the disadvantage of throwing our solution back on the correctness with
which we may have observed measurements of one size only, namely, the mean, the
result of eliminating between (31)-(84) leads to an equation of the eighth order. To
avoid this, it seems easier, as well as more accurate,” to take as the fourth equation
that obtained from the sixth moment.

Lot pgeh® be the sixth moment of the given frequency-curve about its axis of
symmetry, thent

poeh® = 150 %, + 1500,
or,
A Nl ¢: 1)) )

The solution of (31), (32), (33), and (35) is casy.
Eliminating z, we have, writing w; = %, w, = ¢,?,

whence

* Because our equation then depends on all the observations.
t Generally, if M,, be the 22 moment of a probability-curve about its axis

M, = (2r — 1) 6*M,,,,
or,

My, = (20 — 1) (2r —3) ...5.3.1%.
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Thus
(g — 3#22) Wy + (patty — 3 o) Wy — (5 md® - T Moktg) = O.

The two roots of this quadratic are clearly w, and w,, so that the complete solution
is ‘
Mo — Wy
w, —w,’

W = My
)
W, — W,y

o =a

cy =

oy = h /w, o= h \/w,,

A A

where w, and w, are roots of
(s = Bpe?) W + (popry — i) w — (3 — Fnapg) =0 . . . (36)

(12.) Now we may note several general points about these equations.

Let w, be the greater root, then if ,

(i.) py lie between ), and wy, ¢, and ¢, are both positive, or the frequency-curve is
the sum of two normal curves.

(ii.) py > wy, ¢, is positive and ¢, negative, or the greater component group is
positive, we have then a real difference solution.

(iil.) py < wy, ¢, is negative and ¢, is positive, or again the greater coraponent group
is positive, or we have a real difference solution.

Obviously if p, = 3% and ug = Spquy, the coefficients of the quadratic (36) all
become zero, but these are just the conditions which would be satisfied if the
frequency-curve were a true normal curve. This gives for all practical purposes a very
sufficient test of whether a given symmetrical frequency-curve is a true normal curve

If p, be not equal to 3uy®, and w, be not equal to Suau,, then we have no right to
assume that o symmetrical frequency-curve refers to homogeneous material. "We must
then investigate whether a better result cannot be obtained by treating it as two
superposed normal curves having the same axis.

The quantities

OF

A

I propose to call the excess and defect of the frequency-curve. The excess measures
the excess of one-third of the fourth moment over the square of the second
moment ; the defect measures the defect of the fourth moment from one-fifth the
ratio of the sixth moment to the second moment.* Here “excess” and * defect”
‘are used in the algebraic sense, and may take either sign. They appear to be a good

OF

# The introduction of the factor 1/m,?® into both excess and defect is to preserve a relative as dis-
tinguished from an absolute measure of divergence.
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measure for practical purposes of the divergence of a given symmetrical frequency-
curve from the normal type. -

We may now express the quadratic (36) in terms of ¢ and e, and analyze the
results according to the character of the excess and defect.

The quadratic becomes

2 ,
361'(—12> - 622 4+ e — 3¢, (L + ¢) = 0.
\ Mo Mg
This gives -
W &t v/ {(e— 6e)’ + 36¢,°}
Ha be,

(37).

We have the following cases : :

(i.) € and ¢ both positive. Then the values of w are both real, but they must
also be both positive, otherwise o, and o, would not be real. It is necessary, there-
fore, that o

€ > 4/ {(& — 66)* + 36¢°},

or
6 < 3¢ (1 + ¢).
(ii.) € and €, hoth negative. Then w will be real if, when
Vi—ea) <1,
6 (—e) {14+ (—e)}
6 (=) {1 = (—e)l
VI(—ea)>1,

(—e) >6(—e) {1+ (—e)kh

(— &) does not lie between

and

If

then we must have

Further, in order that w may have both values positive, we must have
(— 52)ﬂ> {—e— 6 (— )} — 36 (—«),

(—e)>3(—e){l —(— &)}

or

This latter condition is cleérly satisfied if
Vi(—e)> 1.
\/ (_ E1) <1,

On the other hand, if
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it is easy to see that

8 () {1 — (= &)}
6‘(_" 51) {1 - \/(" 51)7}~

Hence, our final conditions are

is less than

Vi(—ea)> 1,
(—&)>6(—¢) {1+ (—a)l;
V(—ea)<1,
(—e)>6(—e) {1+ (—e)},
3(—a){l —(—e)}
6(— ) {1+ v/ (— ek

then

but if

then either

or it must lie between

and

(iii.) € positive and e, negative; if the values of w are real, one must be negative,
and therefore the solution impossible. ‘

(iv.) €, negative and e, positive ; if the values of w are real, one must be negative,
and therefore the solution impossible.

Thus we conclude :

If the excess and defect are not zero, the frequency-curve, although symmetrical, is
nqt’nqrmal. If the excess and defect are of opposite signs, then the frequency-curve
cannot be broken up into the sum or difference of ¢wo normal curves with common.
axis. The frequency-curve, if compounded of normal-curves at all, is of a higher and
more complex character. If the excess and defect are of the same sign, then,
provided certain relations hold between the numerical values of the excess and defect
given in (i.) and (ii.) above, there is a real solution of the equation which resolves the
frequency-curve into two components.

(18.) I propose to illustrate this discussion by the consideration of a numerical
example. Professor WELDON has kindly complied with my request for the numerical
details of the most symmetrical curve deduced from his measurements of Naples
crabs by placing the following statistics for a shell measurement—DNo. 4 of his series
—-at my disposal. The resultant-curve and the corresponding normal curve are
pictured in fig. 3 (Plate 3). Clearly, from the ordinary statistician’s standpoint, we
could not expect a more symmetrical result, or a closer graphical agreement, with the
normal curve. But is this a real or merely an apparent agreement? The answer is,
as we shall see, vital for the interpretation to be put on Professor WELDON’S results.


http://rsta.royalsocietypublishing.org/

1~
)

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)
A

Py
A \

/
S

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

96  PROF. K. PEARSON ON THE MATHEMATICAL THEORY OF EVOLUTION,

CraB MEASUREMENTS. No. 4. (Total Number of Crabs = 999.)

. Ordinates . Ordinates
Absoisse, (L umit = Lomub). Abscissze. (1 unit = 1 crab).
1 | 1 11 126
2 ! 3 12 82
3 | 5 . 13 72
4 i 11 14 41
5 | 40 15 28
6 | 55 _ 16 8
7 | 98 17 7
8 | 121 18 0
9 | 152 19 0
10 | 147 20 9

The first six moments were calculated exactly as in the previous case of § 9, by aid
of Table L., except that @ now equals 999, and we go a stage further to p’y and w,.
h equals unity as before. 'We have

g = 9:684,684. p= 0

‘u,zl = 1013022 Mg == 7:5092
p’ = 1,129°9971 pa = 34751
w/ = 18,334°0710 py= 1767280
ps = 165,488°8438 ps = 271°6007
e = 2,150,845°6867 e = 7,919-2781

‘These results give for the position of the centroid d = pu," = 9'6847, and for the
standard-deviation o = ,/p, = 27403, This gives the modulus 3874, and the central
ordinate of the normal curve 145°44. The modulus, as caleulated from the mean
error, is 3'8634, so that the agreement is very close. The normal curve in fig. 8 is con-
structed from the values d = 96847, o = 27403, and y, = 14544 by aid of Table II.

- The following additional quantities were now calculated :—

Py — Bpet = - 75637

€ = ‘044,712
A, = — 226911

My — 10papg = 10°6485

A; = — 319455

Mo — Duop, = 1283'8486

€ = 606,45

&

If we had a perfect probability-curve, ps, ps, g, — 3py%, and p; — 5ugp, ought to be
zero. This, of course, we should not expect in any actual set of observations, but the
comparative smallness of wg, py, Ny, Ny, €, and €, shows a very fair approximation to
the symmetry of the normal curve in these results.
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Since €, > 3¢, (1 + ¢,), we see that the roots (37) of our p. 94 are both positive,
and accordingly it is possible to break up the observation-curve into two normal
curves with coincident axes.

Calculating the two values of w we have

L= 350971, % = 101148,
' g Feo
whence from p. 93 :
¢, = — o X 0046, ¢, = o X 1:0046,

o1 = 4/ (g X 8°50971), o, =4/ (g X 1°01148)
or

¢ = —5%* cy = 1004,

o = 5'134: 0y — 2'756.

For all practical purposes the second group gives the normal curve (¢ = 999,
o = 2740) of the set of observations; that a half per cent. of Crabs have been
removed by selection about the same mean is not large enough to be significant in
measurements of the kind we are here dealing with. So far, then, we may say that
No. 4 of Professor WELDON’S measurements cannot be treated as the sum or difference
of two normal curves having their axes coincident with any substantial improvement
on the normal curve peculiar to the original group.

(14.) Hitherto we have used “ Crab Measurements No. 4” to illustrate the dis-
section of symmetrical frequency-curves, but a little consideration shows at once that
this judging of symmetry by the eye is very likely to be fallacious, and No. 4 may,
after all, break up into two normal curves with non-coincident axes. Should these
two curves correspond to practically the same groups as in the case of the * Fore-
heads,” then we shall have demonstrated that the asymmetry of that frequency-curve
is in all probability due to a mixture of two families in the Naples Crabs and not a
result of differentiation going on in one homogeneous species. The apparent symmetry
of No. 4 weighs nothing in the balance, as may be readily tested by adding together
two normal curves with not widely divergent axes or totals.

What we have been investigating, therefore, in § 13 is really only the special case
in which the method of our first investigation would fail, owing to the coincidence of
the axes of the component normal curves—a coincidence which is improbable @ priori.

I, therefore, proceeded to form the nonic for No. 4, a result which requires only the
values of ug, A, and \; already given.t

The nonic being

P+ ayp” + aypt 4 ayp,® + aspyt + agpy® 4+ UyDy® + agpy 4 g = 0,

* The nearest whole number is here taken for the Crabs in each group.
t The arithmetic throughout was of course of a most laborious character.
MDCCCXCIV.—A, Q
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the coefficients were—

y = 26-47295.

g = 18-11448.

oy = 325°54964639.
ay = 1604°777825,114.
g = 977-342,6614.
o, = — 3154:2006888.

g = — 4412°284,2437.
— 1761-180374.

I

Uy

Writing p, = — x, we have for the nonic f(x) and its first derived function* £, (x)
the following expressions—

J(x) = X"+ 26°472,95x7 — 18°114,48x°
-+ 325'549,646X5 — 1604'777,825)(‘
-+ 977‘342,661)(3 -+ 3154'200,689;{"2 — 4412°284,244x
+ 1761°180,374 = 0,
and
Ji(x) = x® + 20°590,07y° — 12:076,32)
+ 180°860,915y* — 713:284,589)
+ 325°780,887x* 4 700°933,486x
— 490°253,805.

The SturM’s functions were now formed, and with the following results—

8

X
S= -
Sl = -
Sl = -
Sl = -
Sil) = -
Sl = -
Sl = -
fi) = .
)= . . . .
A= .+
~ Totals 4 changes 4 changes 5 changes.

b+ +++ 1 ++ 10

>
++il+l+++l?
8

x=0
-+
+
-+
-

Thus the nonic has one root of y between 0 and — o, and no roots between
0 and 4 . In other words it has 8 imaginary roots and only 1 real one.

* Divided by the factor 9.
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This root was now localized. Putting p, = y%5/x" in the original nonic, I easily
found x’ to lie between 0 and 1, then between ‘15 and '16, and by a succession of
approximations to be 1533, and finally -15326.

Thus
Py = 1'5326.

ps was then ascertained from equation (27) of p. 84, and finally p, = p,/p, was
found to be 2:17245. The quadratic (28) for y was then :

y? — 2°17245y 4 1-5326 = 0,

which has both its roots imaginary.

Thus, considerably to my surprise, but greatly to my satisfaction, it was demonstrated
that there is no solution whatever of the problem of breaking up the curve of No. 4
measurements into two normal components.

All mine roots of the fundamental nonic lead to imaginary solutions of the problem.
The best and most accurate representation of No. 4 is the normal curve of fig. 3.

The result of this investigation seems to me most important. Professor WELDON'S
material ¢s homogeneous, and the asymmetry of the * forehead ” curve points to a real
differentiation in that organ, and not to a mixture of two families having been
dredged up.

On the other hand, I cannot think that for the problem of evolution the dissection
of the most symmetrical curve given by the measurements is unnecessary. There
will always be the problem : Is the material homogeneous and a true evolution going
on, or is the material a mixture? To throw the solution on the judgment of the eye
in examining the graphical results is, I feel certain, quite futile.

Whenever in measuring a series of organs the results give an asymmetrical curve,
we must accordingly proceed as follows :—

Stage (). —Break up this asymmetrical curve into components ; if there are several
solutions, the theory of correlation or the test of the sixth moment will, perhaps,
enable us to say which is the most satisfactory.

Stage (1).—Endeavour to break up the most symmetrical curve ; if it cannot be
broken up, either into normal components with non-coincident axes or normal com-
ponents with coincident axes, the material is homogeneous and the asymmetrical curve
points to a true differentiation in the organ to which it refers. If, on the other hand,
the most symmetrical frequency-curve does break up, then if the numbers in its
component, groups be the same (or practically the same) as in those corresponding to
the asymmetrical curve, we are really dealing with a mixture of heterogeneous material,
and we shall have ascertained the proportions of the mixture. If the numbers
should not be the same, then we cannot assert that we have a mixture, but we have
found a case of differentiation in both organs at the same time.*

* BerrirLon has found a double-humped frequency-curve for the height of the inbabitants of the

o 2
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These stages seem to represent the mathematical treatment of this portion of the
problem of evolution.

(15.) Although the nonic corresponding to ““ Crabs No. 4,” has no real negative
root, I found on tracing its value for values of p, between 0 and — 2, that near
py = — '82 it reached a minimum value of about 199 as compared with about 1761
at 0 < 1254 at — 2. Here then was, as it were, a tendency towards a root, and
the question occurred to me whether this “tendency ” in any way corresponded to
the groups into which the ¢ foreheads” were differentiated. I therefore investigated
the root of the first derived function of the nonic lying about — ‘82, and found it
to be — 8497, This led to p, from equation (27) being — 52521, whence

Y2 4 52521y — 8497 = 0,
or

| v, = '15705, vy = — 540915.
Whence nearly

2, = 972, 2y = 028,
or the numbers in the two groups are
¢, =971 and ¢, = 28.

Clearly even this “tendency to a root” in no way fits either solution of the
“forehead ” case, and No. 4 measurements neither break up, nor have they even
a tendency to break up, in the same manner as the “foreheads.” Since the nonic
must always have a *“tendency” to two real roots at a time, we may note that the
»other root to which it may be said to tend, or for which f(p,) is a minimum, lies
between — ‘9 and — 1, and is just as insignificant as that investigated above. We
may say that not only is the material of No. 4 homogeneous, but it has not even a
“ tendency ” towards heterogeneity.

I11.

(16.) The object of the present paper being solely to illustrate a general method
for the reduction frequency-curves to normal types, and not a biological investigation,
it might suffice to stop at this point, when the rules for the reduction of symmetrical
and asymmetrical curves have been given and illustrated. But it must be remembered
that the method depends upon the solution of a nonic, and that the variety presented

department of the Doubs. Mr. Baresox has found a double-humped curve for the claspers of Earwigs.
Without the investigation of measurements of another organ, it seems impossible to say whether the
inhabitants of the Doubs, as BERTILLON supposes, are a mixture of races, or Mr. BATESON’S earwigs were
really homogeneous. In either case our methods of investigation would show the proportions belonging
to each group of the mixture, or to each group of the differentiating species.
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by the roots of this equation suggests very considerable divergences and peculiarities
as likely to arise, when a considerable number of frequency-curves are dealt with.

The discussion of the case of Crabs must not be taken as indicating that the
incidents of this case will be generally true for other groups of biological measure-
ments, until a very great variety of such groups of measurements have been
mathematically analyzed. '

In order to throw more light on the general question, I have added the following
analysis for the case of Prawns, the measurements for which were kindly placed at
my disposal by Mr. H. THompsoN, who has been making elaborate measurements of
1,000 specimens in the Zoological Laboratory of University College, London.

Palemon serratus.—Measurements in 998 ¢ specimens (adult) from penultimate
to hindmost tooth on the carapace.

Measurements reduced Measurements reduced
to thousandths of body | Number of specimens. | to thousandths of body | Number of specimens.
length. length.
27 1 49 25
28 0 50 17
29 0 51 11
30 0 52 8
31 1 53 4
32 0 54 1
33 3 55 0
34 3 56 0
35 4 57 1
36 11 58 1
37 24, 59 6
38 38 60 0
39 56 61 0
40 80 62 0
41 105 63 0
42 121 64 0
43 117 65 1
44 108 66 0
45 77 67 0
46 69 68 0
47 62 69 1
‘ 48 48
‘ |

The novel and somewhat remarkable feature in these results are the ¢ giants” at
65 and 69. To neglect these giants, as in some degree anomalous, would, no doubt
be convenient, so far as the analysis is concerned, and would lead to a simpler reduction
of the group. They have, however, been retained as among the data given to me,
and their presence affords an interesting illustration of the various singularities which
may arise in the solution of the fundamental nonie.

(17.) The curve (see fig. 4) given by the observed numbers will be at once seen to
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be distinctly asymmetrical.  Adopting the carapace length 31 as the origin of
coordinates, and using the same notation as before, we have the following results :—*

pi=d (: q) = 16:191,382,8 =0
wy = 276°277,555 py=  14'116,678,13
s = 4,963'876,753,5 ps = 83424,02673
w, = 94,386734,469 Mty = 1,288'640,094,26
ps= 1,920,725'520,040 s = 16,752:563,9961
A= — 2072:394,903
\; = — 36,102°605,1706.
The standard-deviation of the gronp as a whole is given by o = /p,, or
o= 37572
The mean errort obtained from o . . . . =29978
’ ’ ’ directly . . . . = 28776.

(In the case of the “foreheads” of Crabs, the mean error from o was 38028, and
directly 4:4087. This divergence between the mean error, as found practically from
second and first moments, is a very good test of the asymmetry of the frequency-
curve. In the very symmetrical measurements of “Crabs No. 4,” the modulus, as
calculated from the standard-deviation and from the mean error, had the near values
3:874 and 3'863.)

The curve obtained from the observations as a single group (v.e., d = 16°1914 and
o = 3'7572) is given in fig. 4 (Plate 4).

Taking x = +%p, we have for the fundamental nonic and its first differential

S =x S ()= 9%

4 24°177,940,535x7 1 169-245,583,7 43y
4+ 1°675,748,344x5 + 10°054,490,066x°
4 299°620,308,770y° + 1498-101,518,851*
— 943°393,909,962)* — 3773°575,639,850y"
— 864°540,147,350y3 — 2593-620,442,052)>
— 274750,163,918%° —  549°500,327,835y
— 34°486,278,563 —  34°486,278,563

—  1'394,286,418 = 0.

#* These results were calculated to a higher degree of accuracy than in the case of the Crabs, a result
rendered necessary by the apparent sensitiveness of the roots in this case to a slight change in the value
of the coefficients of the nonic.

+ Mean error is here used, not in GAuss’s sense, but in the sense of arithmetically mean error,
= 7979 & theoretically.
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Clearly there is only one positive root. This was found to be

X = 25868658,
This gave
Py = 25°868,658,
whence I found
p = 9'669,970.
Consequently the roots of
V—py+p=0

were imaginary and no solution involving the difference of two normal components
was possible.

The next stage was to find the negative roots. These were easily demonstrated to
lie between 0 and 1, and then it was shown that the value of f(y) only changed sign
twice between these values. Thus the nonic was proved, without calculating STurM’S
functions, to have only three real roots. The two negative roots are :—

X, = — '154,481,14
and
Xo = — "078,262,95.

These roots lead to the following solutions :—
(A.) First additive Solution for Carapace of Prawns.

py= — 1'544,8114,
p,=  26758,0108,
y, = — ‘057,6086, vy = 26°815,6194,
z, = 997,856, #o = '002,144.
1st Component. 2nd Component.
c, = 995,860, c, = 2140,
b= —  -057,6086, b, = 26°815,6194,
o= 35595, o= 576264 — 1
yp = 111-6142. 1, = imaginary.

(B.) Second addutive Solution for Carapace of Prawns.

Py = — "782,6295,

p, = 51685907,
y, = — ‘147,3614, y, = 5°310,9521,
n= '973,0024, 7= '026,9976.
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1st Component. 2nd Component.
¢, = 9710564, ¢y, = 269436,
b, = — °147,3614, b, = 5'310,9521,
o, = 3'389,672, o, = 8'932,996,
1y, = 114°28698. Yy, = 1°203,280.

To these solutions we may add :—
(C.) Parameters of Normal Curve deduced, from entire group of observations.

d= 16-191,583,
¢ = 998,

o= 37572,

y = 105°968,04.

(D.) Parameters of Normal Curve deduced by excluding two *giants” from
observations.

d = 16-14357 (b= — '04781),
c = 996,
o= 36051,

y= 110-21786.

The curves corresponding to (A), (B), (C), and (D) as well as the observation-
curve are given in figs. 4 and 5, and I shall now proceed to discuss several important
points with regard to them.

(18.) The first point to be noted is the existence of the dwarf, carapace 27, and
the giants, carapaces 65 and 69.

The normal curve has a standard-deviation 37572, and the mean carapace being
about 43, we have no less than three measurements deviating by more than four
times the standard-deviation from the mean ; two of them, indeed, differ by nearly
six times the standard-deviation from the mean. We might expect three such
deviations of over four times the standard-deviation to occur in the measurement of
50,000 Prawns, but they are extremely improbable in the measurement of 1000
prawns. That two should occur in the measurement of 1000 Prawns, with a
deviation six times the standard, is so improbable that it ought to lead us to reject
the rormal curve as a representation of the measurements. We are either dealing
with a mixed population of Prawns, or possibly there are a few deformed individuals
amid a normal population.*

There is another point, however, in which the normal curve, based on the total

* T exclude the possibility of any serious error of measurement, having reason to believe in the great
care with which the determinations were made.
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observations, diverges considerably from the observational result, namely (see fig. 4),
in the defect of carapaces about 45. This defect largely contributes to the
asymmetrical appearance of the curve. 1 felt very confident that by neglecting
the eccentric group of *giants” I could find two components, whose resultant would
fit the curve of observation as closely as the resultant-curves found for the similar
case of the forehead of Crabs. I was peculiarly interested, however, in ascertaining
whether the method of resolution by aid of the nonic would pay more attention to
the outlying giants or to the less improbable defect of individuals about 45. I even
imagined that out of the nine possible solutions some might be solutions for the
giants and some for the 45 defect. As a matter of fact, the two solutions which
have any meaning are entirely taken up with the very improbable outlying eccen-
tricities of the observations. These eccentricities must first be removed from the
observations before the method will be of service in resolving the asymmetry of the
bulk of the observation-curve.

The method in which the nonic deals with the abnormalities is very characterislic,
and I venture to think highly suggestive. -

In fig. 4 the normal curve excluding the two giants is given. It fits the observa-
tion-curve, as far as appearances go, slightly better than the true normal curve.
But the first solution of the nonic tells us not to absolutely reject the giants. It
gives us two components, the first of which fits the observations slightly better than
the normal curve D (giants excluded). It has practically the same area (99586 as
compared with 996), a slightly less standard-deviation (8'5595 as compared with
3'6051), and consequently an increased maximum ordinate. This, with a slightly
shifted axis, gives a somewhat better fit. In addition to this first component we have
a second component with an area of 2'140, and a mean of 70 for the carapace. This
component corresponds closely to the two giants with a mean of 67. It has, how-
ever, an wmaginary standard-deviation. Clearly the addition of two to the first
component, if distributed really, could make no sensible change in its appearance,
and we may then sum up the first solution of the nonic in the following words :—

It does not absolutely reject the two giants, but places an imaginary distribution of
2'14 in their neighbourhood, and thus obtains for the other component and the
resultant-curve (which must be practically identical with it) a better approach to the
observation-curve than if the giants had been rejected.

It would appear, therefore, that our method of dissection offers, by means of
small components with imaginary distributions, a means of obtaining better results
than by simply rejecting (or, perhaps, even weighting) anomalous observations.

The second method by which the nonic attempts to account for the eccentricities of
these carapace 1neasurements, is by mixing a small population of about 27 per cent. of
giants with the normal population. These giants have a mean carapace of 48'5, while
the rest of the population has a mean of only 43. This population of giants, however,
has a very large standard-deviation, 7.c., 8'9330 as compared with the 33897 of the

MDCCCXCIV.—A. P
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rest of the population. It is clear that this population of giants is an unstable
population, v.e., a very small disturbance would largely change its centre. ~ That it
accounts for and covers the dwarf and two giant anomalies is clear, and the resultant-
curve, based on the addition of the two components, is a fairly close approach to the
observation-curve—far closer indeed than that provided by the first solution, and a
great advance on the normal-curve C, resulting from the observations as a whole (see
fig. 5). I am inclined, accordingly, to suspect that the family of Prawns was not
homogeneous, but. contained between 2 and 3 per cent. of a giant population with a
large standard deviation. Possibly the theory of correlations may settle whether this
is the real state of the case, or whether the anomalies referred to ought to be rejected
and a new investigation made to dissect the asymmetrical curve for the carapaces
when the outlying parts, which control the nonic at present, are removed.

The investigation of this case, however, with all the observations included, shows
the great variety of solutions which may be suggested by the dissection of various
anomalous and asymmetrical frequency-curves.

Tasre I.—Powers of the Natural Numbers,

Powers.
First. Second. Third. Fourth. Trifth. Sixth.
1 1 1 1 1 1
2 4 8 16 32 64
3 9 27 81 243 729
4 16 64 256 1,024 4,096
5 25 125 : 625 3,125 15,625
6 36 216 ) 1,296 7,776 46,656
7 49 343 2,401 16,807 117,649
8 64 512 4,096 32,768 262,144
9 81 729 6,561 59,049 531,441
10 100 1,000 10,000 100,000 1,000,000
11 121 1,331 14,641 ; 161,051 1,771,561
12 144, 1,728 20,736 248,832 2,985,984
13 169 2,197 28,561 371,293 4,826,809
14 196 2,744 38,416 537,824 7,529,536
15 225 3,375 50,625 759,375 11,390,625
16 256 v 4,096 65,536 1,048,576 16,777,216
17 289 4,913 83,521 1,419,857 24,137,569
18 324, 5,832 104,976 1,889,568 34,012,224
19 361 6,859 130,321 2,476,099 47,045,881
20 400 8,000 160,000 3,200,000 64,000,000
21 441 9,261 194,481 4,084,101 85,766,121
22 484, 10,648 234,256 5,153,632 113,379,904
23 529 12,167 279,841 6,436,343 148,035,889
24, 576 13,824 331,776 7,962,624 191,102,976
25 625 15,625 390,625 9,765,625 244,140,625
26 676 17,576 456,976 11,881,376 308,915,776
27 729 19,683 531,441 14,348,907 387,420,489
28 784, 21,952 . 614,656 17,210,368 481,890,304
29 841 24,389 707,281 20,511,149 594,823,321
30 900 27,000 810,000 24,300,000 729,000,000
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TaBLE II.—Onrdinates of Normal Curve.

D = Deviation. S = Standard Deviation.

F = Frequency. P = Maximum Frequency (}I;?;;) .

D/S. F/P. D/S. F/P.
0 1 16 2780
01 19950 17 2357
02 9802 18 1979
03 9560 19 1645
04 9231 2 1353
05 8825 22 10889
06 8353 24, 10561
07 7827 26 10340
08 7262 28 0198
09 6670 3 0111
1 6065 32 10060
11 5467 34 10031

12 4868 36 0015
13 4286 38 10007
14 3753 4 10003
15 3246 5 000,004

[Notrg, added February 10, 1894.-—(1.) The importance of breaking up asymmet-
rical frequency-curves into normal components has been recognized for a long time
by anthropologists and biologists. Attempts at a solution have been made by
R. Livi, ¢Sulla statura degli Italoni, Firenze, 1883 (see also ¢ Archivio per
U Antropologia e UEtnologia,” vol. 13, Firenze, 1883, and ©Annali di Statistica,’
vol. 8, 1883, pp. 119-56). Also by O. AmmoN in his recent work ¢ Die natiirliche
Auslese bevm Menschen, Jena, 1893. These attempts can hardly be looked upon
as serious. Professor Lexis and Dr. VENN have pointed out that the curve of
deaths for each year for 1000 persons born in the same year—the true mortality-
curve—is also in all probability a compound curve.

Since writing the above memoir I have succeeded in resolving this mortality-curve
into components which are not, however, all of the normal type, but become, as we
approach infantile mortality, of the skew form (see p. 74 above).

O. AmmoN, in the volume cited above, endeavours to demonstrate an evolution in
the length-breadth index of the skull of South-Germans since primitive times. He
does this by comparison of the index as obtained from measurements on skulls from
the Row-Graves and on modern skulls. He has not, however, noticed that the
frequency-curve for Row-Grave skulls is asymmetrical. I have succeeded in
breaking it up into two components, one of which practically coincides in mean
and standard-deviation with the frequency-curve for the skulls of modern South-

P2
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Germans. In other words, the Bow-Graves contain a mixed population, one element of
which corresponds closely to the modern South-German population. AmmoN’s state-
ment, therefore, that an evolution has taken place in this particular skull index appears
to fall to the ground. The whole problem of the compound nature of skull frequency-
curves, both in England and Germany, is a very interesting and difficult one, and I
do not wish at present to anticipate results, which I hope when my investigations
are complete to publish as a whole. The above may suffice to indicate the range of
problems to which a resolution of asymmetrical frequency-curves into normal
components may be applied.

(2.) With regard to the method adopted in the memoir itself, I am very conscious
of the defects under which it suffers—the laborious character of the arithmetic
involved, and the question of what may be the probable error of the solution obtained
by the method of higher moments. But I had to deal with the fact that the problem
is one which urgently needed a solution in the case of both economic and biological
statistics. Better solutions than mine may be ultimately found, but although more
than one mathematically trained statistician has for some time recognized the impor-
tance of the problem, no solution, so far as I am aware, has hitherto been forthcoming.

With regard to the amount of error introduced by the use of higher moments, a
word may be said. I have not been able to work out the general problem suggested
to me by Professor GEOrRGE DARWIN : “ Given the probable error of every ordinate
of a frequency-curve, what are the probable errors of the elements of the two normal
curves into which it may be dissected ?”

I can, however, indicate the sort of differences which are likely to occur in results
based on high or on low moments. Suppose the distribution of an organ in a group
of animals actually does follow a normal frequency-curve. Then it is obvious that in
selecting 1000 of these animals at random and measuring their organs, an error of the
same magnitude in the frequency of an organ of a given size is more likely to occur in
a size near the mean than in a size far from the mean. Now a low moment pays
greater attention than a high moment to an error in the frequency near the mean
and less attention than a high moment to one far off. In other words, a frequency-
curve calculated from low moments fits best near the centre; one calculated from
high moments fits best near the tails of the observation-curve. The problem is
accordingly the following : an error in frequency near the tail is not as probable as an
equal error in frequency near the mean; but if it does occur a high moment pays
much more attention to it than a low moment ; on the other hand, the low moment
pays more attention than the high moment to more probable errors in frequency.
Which tendency on the whole will prevail %

Turning to the result in the foot-note, p.-92, we have for the 27

M, = (2r — 1) (2rr — 3) ... 5.3.1 o™,

B moment—

and

M,, = S (a*y dx).
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GENERAL EQUATION OF A CUBIC SURFACE. 45
Then the equation (A) takes the form
ayzu = (x — oT)(y — bT)(z — T) (w —dT) . . . . (D),

and it represents, besides the plane T, the cubic surface passing through the twelve
straight lines, which are represented in the annexed figure, as well as three other
straight lines which are not represented in the figure.

y=bT
=0

) /- bT}u) = bT}(S)

2 = ¢T z = cT z = cT
rx =0 }(8) Y= }(9) u =20 }(7)

u=dT u=dT u=dT
10 11 12
w:k()y=0}()z=0}()
and
St
T ),
s —wTJ
C

which meets (3), (4), (9), and (10);
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moments respectively, I notice the following values for the standard-deviation of
¢ Crabs No. 4,” as calculated from the second, fourth, and sixth moments—

o, = 2°74,
oy, = 277,
o == 2°84.

Practically, it would be difficult to say which of these results gives the best fitting
theoretical curve. For statistics of this kind they are sensibly the same. Thus, till
another method of attacking the problem of the resolution of asymmetrical frequency-
curves is propounded, I think there is not sufficient evidence against the use of higher
moments to lead us to discard a method based upon them as essentially likely to lead
to large errors.—K. P.]
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